Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474321

RESUMO

The appropriate expression and localization of cell surface cell adhesion molecules must be tightly regulated for optimal synaptic growth and function. How neuronal plasma membrane proteins, including cell adhesion molecules, cycle between early endosomes and the plasma membrane is poorly understood. Here we show that the Drosophila homolog of the chromatin remodeling enzymes CHD7 and CHD8, Kismet, represses the synaptic levels of several cell adhesion molecules. Neuroligins 1 and 3 and the integrins αPS2 and ßPS are increased at kismet mutant synapses but Kismet only directly regulates transcription of neuroligin 2. Kismet may therefore regulate synaptic CAMs indirectly by activating transcription of gene products that promote intracellular vesicle trafficking including endophilin B (endoB) and/or rab11. Knock down of EndoB in all tissues or neurons increases synaptic FasII while knock down of EndoB in kis mutants does not produce an additive increase in FasII. In contrast, neuronal expression of Rab11, which is deficient in kis mutants, leads to a further increase in synaptic FasII in kis mutants. These data support the hypothesis that Kis influences the synaptic localization of FasII by promoting intracellular vesicle trafficking through the early endosome.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Junção Neuromuscular/metabolismo , Sinapses/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Neurônios/metabolismo
2.
PLoS One ; 19(3): e0300255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512854

RESUMO

Chromodomain helicase DNA binding domain (CHD) proteins, including CHD7 and CHD8, remodel chromatin to enable transcriptional programs. Both proteins are important for proper neural development as heterozygous mutations in Chd7 and Chd8 are causative for CHARGE syndrome and correlated with autism spectrum disorders, respectively. Their roles in mature neurons are poorly understood despite influencing the expression of genes required for cell adhesion, neurotransmission, and synaptic plasticity. The Drosophila homolog of CHD7 and CHD8, Kismet (Kis), promotes neurotransmission, endocytosis, and larval locomotion. Endocytosis is essential in neurons for replenishing synaptic vesicles, maintaining protein localization, and preserving the size and composition of the presynaptic membrane. Several forms of endocytosis have been identified including clathrin-mediated endocytosis, which is coupled with neural activity and is the most prevalent form of synaptic endocytosis, and activity-dependent bulk endocytosis, which occurs during periods of intense stimulation. Kis modulates the expression of gene products involved in endocytosis including promoting shaggy/GSK3ß expression while restricting PI3K92E. kis mutants electrophysiologically phenocopy a liquid facets mutant in response to paradigms that induce clathrin-mediated endocytosis and activity-dependent bulk endocytosis. Further, kis mutants do not show further reductions in endocytosis when activity-dependent bulk endocytosis or clathrin-mediated endocytosis are pharmacologically inhibited. We find that Kis is important in postsynaptic muscle for proper endocytosis but the ATPase domain of Kis is dispensable for endocytosis. Collectively, our data indicate that Kis promotes both clathrin-mediated endocytosis and activity-dependent bulk endocytosis possibly by promoting transcription of several endocytic genes and maintaining the size of the synaptic vesicle pool.


Assuntos
Cromatina , Clatrina , Animais , Clatrina/metabolismo , Montagem e Desmontagem da Cromatina , Transmissão Sináptica/fisiologia , Drosophila/metabolismo , Endocitose/genética , DNA Helicases/genética , DNA Helicases/metabolismo
3.
Cell Rep Methods ; 3(5): 100487, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37323573

RESUMO

The PSD-95 homolog, DLG1, is important for excitatory synapse structure and function throughout the Drosophila nervous system. In this issue of Cell Reports Methods, Parisi et al. present a tool, dlg1[4K], that enables cell-specific DLG1 visualization without altering basal synaptic physiology. This tool will potentially enhance our understanding of neuronal development and function in both circuits and individual synapses.


Assuntos
Proteínas de Membrana , Sinapses , Proteínas de Membrana/genética , Proteína 1 Homóloga a Discs-Large , Proteína 4 Homóloga a Disks-Large , Sinapses/metabolismo , Fatores de Transcrição
4.
Front Cell Neurosci ; 16: 957232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072568

RESUMO

The Tetraspanin (Tsp), CD63, is a transmembrane component of late endosomes and facilitates vesicular trafficking through endosomal pathways. Despite being widely expressed in the human brain and localized to late endosomes, CD63's role in regulating endo- and exocytic cycling at the synapse has not been investigated. Synaptic vesicle pools are highly dynamic and disruptions in the mobilization and replenishment of these vesicle pools have adverse neuronal effects. We find that the CD63 homologs, Tsp42Ee and Tsp42Eg, are expressed at the Drosophila neuromuscular junction to regulate synaptic vesicle pools through both shared and unique mechanisms. Tsp42Ee and Tsp42Eg negatively regulate endocytosis and positively regulate neurotransmitter release. Both tsp mutants show impaired locomotion, reduced miniature endplate junctional current frequencies, and increased endocytosis. Expression of human CD63 in Drosophila neurons leads to impaired endocytosis suggesting the role of Tsps in endocytosis is conserved. We further show that Tsps influence the synaptic cytoskeleton and membrane composition by regulating Futsch loop formation and synaptic levels of SCAR and PI(4,5)P2. Finally, Tsp42Ee and Tsp42Eg influence the synaptic localization of several vesicle-associated proteins including Synapsin, Synaptotagmin, and Cysteine String Protein. Together, our results present a novel function for Tsps in the regulation of vesicle pools and provide insight into the molecular mechanisms of Tsp-related synaptic dysfunction.

5.
Cell Rep ; 34(7): 108753, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33596422

RESUMO

Mutations in the genes encoding the lysine demethylase 5 (KDM5) family of histone demethylases are observed in individuals with intellectual disability (ID). Despite clear evidence linking KDM5 function to neurodevelopmental pathways, how this family of proteins impacts transcriptional programs to mediate synaptic structure and activity remains unclear. Using the Drosophila larval neuromuscular junction (NMJ), we show that KDM5 is required presynaptically for neuroanatomical development and synaptic function. The Jumonji C (JmjC) domain-encoded histone demethylase activity of KDM5, which is expected to be diminished by many ID-associated alleles, is required for appropriate synaptic morphology and neurotransmission. The activity of the C5HC2 zinc finger is also required, as an ID-associated mutation in this motif reduces NMJ bouton number, increases bouton size, and alters microtubule dynamics. KDM5 therefore uses demethylase-dependent and independent mechanisms to regulate NMJ structure and activity, highlighting the complex nature by which this chromatin modifier carries out its neuronal gene-regulatory programs.


Assuntos
Proteínas de Drosophila/metabolismo , Histona Desmetilases/metabolismo , Junção Neuromuscular/metabolismo , Animais , Drosophila , Feminino , Masculino
6.
Sci Rep ; 9(1): 19368, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852969

RESUMO

Chromatin remodeling proteins of the chromodomain DNA-binding protein family, CHD7 and CHD8, mediate early neurodevelopmental events including neural migration and differentiation. As such, mutations in either protein can lead to neurodevelopmental disorders. How chromatin remodeling proteins influence the activity of mature synapses, however, is relatively unexplored. A critical feature of mature neurons is well-regulated endocytosis, which is vital for synaptic function to recycle membrane and synaptic proteins enabling the continued release of synaptic vesicles. Here we show that Kismet, the Drosophila homolog of CHD7 and CHD8, regulates endocytosis. Kismet positively influenced transcript levels and bound to dap160 and endophilin B transcription start sites and promoters in whole nervous systems and influenced the synaptic localization of Dynamin/Shibire. In addition, kismet mutants exhibit reduced VGLUT, a synaptic vesicle marker, at stimulated but not resting synapses and reduced levels of synaptic Rab11. Endocytosis is restored at kismet mutant synapses by pharmacologically inhibiting the function of histone deacetyltransferases (HDACs). These data suggest that HDAC activity may oppose Kismet to promote synaptic vesicle endocytosis. A deeper understanding of how CHD proteins regulate the function of mature neurons will help better understand neurodevelopmental disorders.


Assuntos
Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Proteínas de Drosophila/genética , Endocitose/genética , Proteínas de Homeodomínio/genética , Vesículas Sinápticas/genética , Aciltransferases/genética , Animais , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/genética , Histona Desacetilase 1/genética , Humanos , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética
7.
Mol Cell Neurosci ; 87: 77-85, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29249293

RESUMO

We are beginning to appreciate the complex mechanisms by which epigenetic proteins control chromatin dynamics to tightly regulate normal development. However, the interaction between these proteins, particularly in the context of neuronal function, remains poorly understood. Here, we demonstrate that the activity of histone deacetylases (HDACs) opposes that of a chromatin remodeling enzyme at the Drosophila neuromuscular junction (NMJ). Pharmacological inhibition of HDAC function reverses loss of function phenotypes associated with Kismet, a chromodomain helicase DNA-binding (CHD) protein. Inhibition of HDACs suppresses motor deficits, overgrowth of the NMJ, and defective neurotransmission associated with loss of Kismet. We hypothesize that Kismet and HDACs may converge on a similar set of target genes in the nervous system. Our results provide further understanding into the complex interactions between epigenetic protein function in vivo.


Assuntos
DNA Helicases/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Cromatina , DNA Helicases/genética , Histona Desacetilases/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Junção Neuromuscular/genética , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/genética
8.
J Exp Neurosci ; 10: 77-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199570

RESUMO

The proper localization and synthesis of postsynaptic glutamate receptors are essential for synaptic plasticity. Synaptic translation initiation is thought to occur via the target of rapamycin (TOR) and mitogen-activated protein kinase signal-integrating kinase (Mnk) signaling pathways, which is downstream of extracellular-regulated kinase (ERK). We used the model glutamatergic synapse, the Drosophila neuromuscular junction, to better understand the roles of the Mnk and TOR signaling pathways in synapse development. These synapses contain non-NMDA receptors that are most similar to AMPA receptors. Our data show that Lk6, the Drosophila homolog of Mnk1 and Mnk2, is required in either presynaptic neurons or postsynaptic muscle for the proper localization of the GluRIIA glutamate receptor subunit. Lk6 may signal through eukaryotic initiation factor (eIF) 4E to regulate the synaptic levels of GluRIIA as either interfering with eIF4E binding to eIF4G or expression of a nonphosphorylatable isoform of eIF4E resulted in a significant reduction in GluRIIA at the synapse. We also find that Lk6 and TOR may independently regulate synaptic levels of GluRIIA.

9.
Mol Cell Neurosci ; 70: 11-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26596173

RESUMO

The postsynaptic density (PSD) is a protein-rich network important for the localization of postsynaptic glutamate receptors (GluRs) and for signaling downstream of these receptors. Although hundreds of PSD proteins have been identified, many are functionally uncharacterized. We conducted a reverse genetic screen for mutations that affected GluR localization using Drosophila genes that encode homologs of mammalian PSD proteins. 42.8% of the mutants analyzed exhibited a significant change in GluR localization at the third instar larval neuromuscular junction (NMJ), a model synapse that expresses homologs of AMPA receptors. We identified the E3 ubiquitin ligase, Mib1, which promotes Notch signaling, as a regulator of synaptic GluR localization. Mib1 positively regulates the localization of the GluR subunits GluRIIA, GluRIIB, and GluRIIC. Mutations in mib1 and ubiquitous expression of Mib1 that lacks its ubiquitin ligase activity result in the loss of synaptic GluRIIA-containing receptors. In contrast, overexpression of Mib1 in all tissues increases postsynaptic levels of GluRIIA. Cellular levels of Mib1 are also important for the structure of the presynaptic motor neuron. While deficient Mib1 signaling leads to overgrowth of the NMJ, ubiquitous overexpression of Mib1 results in a reduction in the number of presynaptic motor neuron boutons and branches. These synaptic changes may be secondary to attenuated glutamate release from the presynaptic motor neuron in mib1 mutants as mib1 mutants exhibit significant reductions in the vesicle-associated protein cysteine string protein and in the frequency of spontaneous neurotransmission.


Assuntos
Proteínas de Drosophila/metabolismo , Neurônios Motores/metabolismo , Mutação , Densidade Pós-Sináptica/metabolismo , Receptores de Glutamato/metabolismo , Sinapses/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Junção Neuromuscular/metabolismo , Receptores de Glutamato/genética , Transdução de Sinais/genética , Transmissão Sináptica/fisiologia , Ubiquitina-Proteína Ligases/genética
10.
PLoS One ; 9(11): e113494, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25412171

RESUMO

The Drosophila neuromuscular junction (NMJ) is a glutamatergic synapse that is structurally and functionally similar to mammalian glutamatergic synapses. These synapses can, as a result of changes in activity, alter the strength of their connections via processes that require chromatin remodeling and changes in gene expression. The chromodomain helicase DNA binding (CHD) protein, Kismet (Kis), is expressed in both motor neuron nuclei and postsynaptic muscle nuclei of the Drosophila larvae. Here, we show that Kis is important for motor neuron synaptic morphology, the localization and clustering of postsynaptic glutamate receptors, larval motor behavior, and synaptic transmission. Our data suggest that Kis is part of the machinery that modulates the development and function of the NMJ. Kis is the homolog to human CHD7, which is mutated in CHARGE syndrome. Thus, our data suggest novel avenues of investigation for synaptic defects associated with CHARGE syndrome.


Assuntos
DNA Helicases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas de Homeodomínio/metabolismo , Junção Neuromuscular/metabolismo , Receptores de Glutamato/metabolismo , Transmissão Sináptica/fisiologia , Animais , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Imuno-Histoquímica , Larva/metabolismo , Locomoção/fisiologia , Neurônios Motores/metabolismo , Músculos/metabolismo , Sinapses/metabolismo , Sinapses/patologia
11.
PLoS One ; 5(9): e12778, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20856675

RESUMO

Wnt proteins are secreted proteins involved in a number of developmental processes including neural development and synaptogenesis. We sought to determine the role of the Drosophila Wnt7b ortholog, Wnt2, using the neuromuscular junction (NMJ). Mutations in wnt2 produce an increase in the number of presynaptic branches and a reduction in immunolabeling of the active zone proteins, Bruchpilot and synaptobrevin, at the NMJ. There was no change, however, in immunolabeling for the presynaptic proteins cysteine-string protein (CSP) and synaptotagmin, nor the postsynaptic proteins GluRIIA and DLG at the NMJ. Consistent with the presynaptic defects, wnt2 mutants exhibit approximately a 50% reduction in evoked excitatory junctional currents. Rescue, RNAi, and tissue-specific qRT-PCR experiments indicate that Wnt2 is expressed by the postsynaptic cell where it may serve as a retrograde signal that regulates presynaptic morphology and the localization of presynaptic proteins.


Assuntos
Proteínas de Drosophila/genética , Drosophila/metabolismo , Neurônios Motores/citologia , Mutação , Junção Neuromuscular/metabolismo , Sinapses/metabolismo , Proteína Wnt2/genética , Animais , Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/genética , Transporte Proteico , Sinapses/genética , Transmissão Sináptica , Proteína Wnt2/metabolismo
12.
Dev Neurobiol ; 68(2): 152-65, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17963254

RESUMO

Neural function is dependent upon the proper formation and development of synapses. We show here that Wnt5 regulates the growth of the Drosophila neuromuscular junction (NMJ) by signaling through the Derailed receptor. Mutations in both wnt5 and drl result in a significant reduction in the number of synaptic boutons. Cell-type specific rescue experiments show that wnt5 functions in the presynaptic motor neuron while drl likely functions in the postsynaptic muscle cell. Epistatic analyses indicate that drl acts downstream of wnt5 to promote synaptic growth. Structure-function analyses of the Drl protein indicate that normal synaptic growth requires the extracellular Wnt inhibitory factor domain and the intracellular domain, which includes an atypical kinase. Our findings reveal a novel signaling mechanism that regulates morphology of the Drosophila NMJ.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Wnt/metabolismo , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mutação/genética , Junção Neuromuscular/genética , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Estrutura Terciária de Proteína/genética , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/genética , Transmissão Sináptica/genética , Proteínas Wnt/química , Proteínas Wnt/genética
13.
Bioinform Biol Insights ; 2: 369-81, 2008 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-19812789

RESUMO

AMPA receptors are responsible for fast excitatory transmission in the CNS and the trafficking of these receptors has been implicated in LTP and learning and memory. These receptors reside in the postsynaptic density, a network of proteins that links the receptors to downstream signaling components and to the neuronal cytoskeleton. To determine whether the fruit fly, Drosophila melanogaster, possesses a similar array of proteins as are found at the mammalian PSD, we identified Drosophila homologs of 95.8% of mammalian PSD proteins. We investigated, for the first time, the role of one of these PSD proteins, Pod1 in GluR cluster formation at the Drosophila neuromuscular junction and found that mutations in pod1 resulted in a specific loss of A-type receptors at the synapse.

15.
J Neurobiol ; 66(4): 332-47, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16408305

RESUMO

A molecular understanding of synaptogenesis is a critical step toward the goal of understanding how brains "wire themselves up," and then "rewire" during development and experience. Recent genomic and molecular advances have made it possible to study synaptogenesis on a genomic scale. Here, we describe the results of a screen for genes involved in formation and development of the glutamatergic Drosophila neuromuscular junction (NMJ). We screened 2185 P-element transposon mutants representing insertions in approximately 16% of the entire Drosophila genome. We first identified recessive lethal mutants, based on the hypothesis that mutations causing severe disruptions in synaptogenesis are likely to be lethal. Two hundred twenty (10%) of all insertions were homozygous lethal. Two hundred five (93%) of these lethal mutants developed at least through late embryogenesis and formed neuromusculature. We examined embryonic/larval NMJs in 202 of these homozygous mutants using immunocytochemistry and confocal microscopy. We identified and classified 88 mutants with altered NMJ morphology. Insertion loci in these mutants encode several different types of proteins, including ATP- and GTPases, cytoskeletal regulators, cell adhesion molecules, kinases, phosphatases, RNA regulators, regulators of protein formation, transcription factors, and transporters. Thirteen percent of insertions are in genes that encode proteins of novel or unknown function. Complementation tests and RT-PCR assays suggest that approximately 51% of the insertion lines carry background mutations. Our results reveal that synaptogenesis requires the coordinated action of many different types of proteins--perhaps as much as 44% of the entire genome--and that transposon mutageneses carry important caveats that must be respected when interpreting results generated using this method.


Assuntos
Diferenciação Celular/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação/genética , Sistema Nervoso/crescimento & desenvolvimento , Sinapses/genética , Animais , Elementos de DNA Transponíveis/genética , Genes Letais/genética , Testes Genéticos , Biblioteca Genômica , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Mutagênese/genética , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/anormalidades , Junção Neuromuscular/genética , Junção Neuromuscular/crescimento & desenvolvimento , Plasticidade Neuronal/fisiologia
16.
BMC Biol ; 3: 27, 2005 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-16351720

RESUMO

BACKGROUND: Sec8 is highly expressed in mammalian nervous systems and has been proposed to play a role in several aspects of neural development and function, including neurite outgrowth, calcium-dependent neurotransmitter secretion, trafficking of ionotropic glutamate receptors and regulation of neuronal microtubule assembly. However, these models have never been tested in vivo. Nervous system development and function have not been described after mutation of sec8 in any organism. RESULTS: We identified lethal sec8 mutants in an unbiased forward genetic screen for mutations causing defects in development of glutamatergic Drosophila neuromuscular junctions (NMJs). The Drosophila NMJ is genetically malleable and accessible throughout development to electrophysiology and immunocytochemistry, making it ideal for examination of the sec8 mutant synaptic phenotype. We developed antibodies to Drosophila Sec8 and showed that Sec8 is abundant at the NMJ. In our sec8 null mutants, in which the sec8 gene is specifically deleted, Sec8 immunoreactivity at the NMJ is eliminated but immunoblots reveal substantial maternal contribution in the rest of the animal. Contrary to the hypothesis that Sec8 is required for neurite outgrowth or synaptic terminal growth, immunocytochemical examination revealed that sec8 mutant NMJs developed more branches and presynaptic terminals during larval development, compared to controls. Synaptic electrophysiology showed no evidence that Sec8 is required for basal neurotransmission, though glutamate receptor trafficking was mildly disrupted in sec8 mutants. The most dramatic NMJ phenotype in sec8 mutants was an increase in synaptic microtubule density, which was approximately doubled compared to controls. CONCLUSION: Sec8 is abundant in the Drosophila NMJ. Sec8 is required in vivo for regulation of synaptic microtubule formation, and (probably secondarily) regulation of synaptic growth and glutamate receptor trafficking. We did not find any evidence that Sec8 is required for basal neurotransmission.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Microtúbulos/fisiologia , Sinapses/fisiologia , Proteínas de Transporte Vesicular/genética , Animais , Clonagem Molecular , DNA Complementar/genética , Feminino , Mutagênese , Mutação , Oviposição , Receptores de Glutamato/genética , Proteínas Recombinantes de Fusão/metabolismo , Transmissão Sináptica
17.
BMC Neurosci ; 6: 44, 2005 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-15985179

RESUMO

BACKGROUND: A clear picture of the mechanisms controlling glutamate receptor expression, localization, and stability remains elusive, possibly due to an incomplete understanding of the proteins involved. We screened transposon mutants generated by the ongoing Drosophila Gene Disruption Project in an effort to identify the different types of genes required for glutamate receptor cluster development. RESULTS: To enrich for non-silent insertions with severe disruptions in glutamate receptor clustering, we identified and focused on homozygous lethal mutants in a collection of 2185 BG and KG transposon mutants generated by the BDGP Gene Disruption Project. 202 lethal mutant lines were individually dissected to expose glutamatergic neuromuscular junctions, stained using antibodies that recognize neuronal membrane and the glutamate receptor subunit GluRIIA, and viewed using laser-scanning confocal microscopy. We identified 57 mutants with qualitative differences in GluRIIA expression and/or localization. 84% of mutants showed loss of receptors and/or clusters; 16% of mutants showed an increase in receptors. Insertion loci encode a variety of protein types, including cytoskeleton proteins and regulators, kinases, phosphatases, ubiquitin ligases, mucins, cell adhesion proteins, transporters, proteins controlling gene expression and protein translation, and proteins of unknown/novel function. Expression pattern analyses and complementation tests, however, suggest that any single mutant - even if a mutant gene is uniquely tagged - must be interpreted with caution until the mutation is validated genetically and phenotypically. CONCLUSION: Our study identified 57 transposon mutants with qualitative differences in glutamate receptor expression and localization. Despite transposon tagging of every insertion locus, extensive validation is needed before one can have confidence in the role of any individual gene. Alternatively, one can focus on the types of genes identified, rather than the identities of individual genes. This genomic approach, which circumvents many technical caveats in favor of a wider perspective, suggests that glutamate receptor cluster formation involves many cellular processes, including: 1) cell adhesion and signaling, 2) extensive and relatively specific regulation of gene expression and RNA, 3) the actin and microtubule cytoskeletons, and 4) many novel/unexplored processes, such as those involving mucin/polycystin-like proteins and proteins of unknown function.


Assuntos
Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Regulação da Expressão Gênica/genética , Receptores de Glutamato/análise , Receptores de Glutamato/genética , Animais , Elementos de DNA Transponíveis/genética , Drosophila , Proteínas de Drosophila/biossíntese , Mutação/genética , Receptores de Glutamato/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...